
Testing Linear Temporal Logic Formulae

on Finite Execution Traces

Klaus Havelund
QSS / Recom Technologies

NASA Ames Research Center
Mo�ett Field, CA, 94035

havelund@ptolemy.arc.nasa.gov

Grigore Ro�su
Research Institute for Advanced Computer Science

NASA Ames Research Center
Mo�ett Field, CA, 94035

grosu@ptolemy.arc.nasa.gov

Abstract

We present an algorithm for e�ciently testing Linear Temporal Logic (LTL) formulae on �nite ex-

ecution traces. The standard models of LTL are in�nite traces, re
ecting the behavior of reactive and

concurrent systems which conceptually may be continuously alive. In most past applications of LTL,

theorem provers and model checkers have been used to formally prove that down-scaled models satisfy

such LTL speci�cations. Our goal is instead to use LTL for up-scaled testing of real software applica-

tions. Such tests correspond to analyzing the conformance of �nite traces against LTL formulae. We

�rst describe what it means for a �nite trace to satisfy an LTL property. We then suggest an optimized

algorithm based on transforming LTL formulae. The work is done using the Maude rewriting system,

which turns out to provide a perfect notation and an e�cient rewriting engine for performing these

experiments.

1 Introduction

Linear Temporal Logic (LTL), introduced by Pnueli in 1977 [31], is a logic for specifying temporal properties
about reactive and concurrent systems. The models of LTL are in�nite execution traces, re
ecting the
behavior of such systems as ideally always being ready to respond to requests, operating systems being
an example. LTL has since then typically been used for specifying concurrent and interactive down-scaled
models of real systems, such that fully formal program proofs could subsequently be carried out, for example
using theorem provers [23, 18] or model checkers [21, 20]. However, such formal proof techniques are usually
not scalable to real sized systems without an extra e�ort to abstract the system manually to a model which
is then analyzed. Model checking of programs has received an increased attention from the formal methods
community within the last couple of years . Several systems have emerged that can model check source code,
such as Java, C and C++ directly (typically subsets of these languages) [22, 35, 9, 2, 25, 30]. However, these
techniques will only work if abstraction is applied to the code [8, 25, 36]. Alternatives to state recording
model checking have also been tried, such as VeriSoft and similar tools [13, 34], which perform stateless model
checking of C++ programs, and ESC [10], which uses a combination of static analysis and theorem proving
to analyze Modula3 programs and recently also Java programs. We believe these techniques will show useful
for targeted veri�cation. However, although these systems provide very high con�dence in the results they
provide, they scale less well. One also needs techniques that can be applied instantly and in a completely

1

automated fashion. In this paper we investigate the use of LTL for testing whether �nite execution traces
conform to LTL formulae.

Our main objective is eventually to develop a practical temporal logic testing environment for NASA
software developers. Testing scales well, and is by far the most used technique in practice to validate software
systems. The merge of testing and temporal logic speci�cation is an attempt to achieve the bene�ts of both
approaches, while avoiding some of the pitfalls from ad hoc testing and the complexity in full-blown theorem
proving and model checking. Of course there is a price to pay in order to obtain a scalable technique: the
loss of coverage. That is, the suggested framework can only be used to examine single execution traces, and
can therefore not be used to prove a system correct. The advantage is that it is completely automated and
scales to programs of any size.

An important question is how to e�ciently test LTL formulae of �nite trace models, and the main decision
here is what data structure one should use to represent the formula such that it can be used to e�ciently
analyze the trace as it is traversed. We will present such a data structure. We will present and implement
our logics and algorithms in Maude [6, 3, 4, 5], a high-performance system supporting both membership
equational logic [29] and rewriting logic [28]. Some of Maude's features will be gradually introduced as
needed, but it is worth mentioning at this stage that the current version of Maude can do up to 3 million
rewritings per second on 800Mhz processors, and that its compiled version is intended to support 15 million
rewritings per second1. The decision to use Maude has made it very easy to experiment with logics and
algorithms. Later realizations of the work may be done in a standard programming language such as Java
or C++, although the speed of Maude is very promising at this point.

The idea of using LTL in program testing is not new, and has already been pursued in the commercial
Temporal Rover tool (TR) [11], which admittedly has inspired us in a major way to do this work. In TR
one states LTL properties as comments in the code where statements can occur. These statements are then
translated into statements in the programming language that are executed whenever reached during the
execution. The implementation details of TR are not public. The work presented in this paper is motivated
by the following observations. First, we �nd the ideas behind TR attractive due to the scalability and
automatedness of the approach, and we therefore �nd it worthwhile to continue a practical investigation.
In order to do that we need a software base for experimentation. Second, the use of a rewriting system,
such as Maude, makes it possible do these experiments very fast and elegantly. This also makes it possible
to formalize the ideas in a framework close to standard mathematics. Third, we believe that the formula
transforming approach suggested in this paper is a new and e�cient way of testing LTL formulae, the main
result of the paper. Finally, whereas TR is based on annotating the code with formulae which are then
expanded into the code, our approach is event-based where a program is seen as emitting events to an
observer process, which then examines the events. In this respect our framework is similar to the MaC
system [27] which, however, does not support the standard LTL. Such an event-based framework is well
suited for program tracing in general, and has for example been used in detection of race conditions and
deadlocks in the Visual Threads tool [17, 32], and in the Java PathFinder tool [19].

Section 2 contains preliminaries, including an introduction to Maude and the standard de�nition of
propositional LTL with its in�nite trace models. Section 3 presents a �nite trace semantics for LTL and
then its implementation in Maude. Although abstract and elegant, this implementation is not e�cient, and
Section 4 presents an e�cient implementation using a formula transformation approach. Finally, Section 5
contains conclusions and a description of future work.

2 Preliminaries

This section brie
y introduces Maude, a rewriting-based speci�cation and veri�cation system, then a rela-
tively standard speci�cation of propositional calculus which yields an e�cient rewriting system for reducing
propositional formulae, and in the end presents the standard de�nition of propositional LTL with its in�nite
trace models.

1Personal communication by Jos�e Meseguer.

2

2.1 Maude

Maude [6, 3, 4, 5] is a freely distributed high-performance system in the OBJ [16] algebraic speci�cation
family, supporting both rewriting logic [28] and membership equational logic [29]. Because of its e�cient
rewriting engine, able to execute up to 3 million rewriting steps per second on currently standard hardware
con�gurations, and because of its metalanguage features based on re
ection [7], Maude turns out to be an
excellent tool to create executable environments for various logics, models of computation, theorem provers,
and even programming languages. We were delighted to notice how easily we could implement and e�ciently
validate our algorithms for testing LTL formulae on �nite event traces in Maude, admittedly a tedious task
in C++ or Java, and hence decided to use Maude at least for the prototyping stage of our runtime check
algorithms.

We very brie
y and informally remind some of Maude's features, referring the interested reader to the
manuals [4, 5] for more details. We'll restrict our attention to only Maude's module system and order-sorted
equational logic since we don't need more for this paper. Maude supports modularization in the CLEAR
[1] and OBJ [16] style of parameterized programming, with highly generic and reusable modules. There are
various kinds of modules, but we are using only functional modules which follow the pattern \fmod <name>

is <body> endfm". The body of a functional module consists of a collection of declarations, of which we are
using importing, sorts, subsorts, operations, variables and equations, usually in this order. We'll describe all
these \on the
y", as they appear in the paper.

2.2 Propositional Calculus

This subsection presents a decision procedure for propositional calculus due to Hsiang [26] which makes high
use of associative/commutative axioms. It provides the usual truth constants (true and false) together
with a potentially in�nite set of propositional variables, and also the usual connectives _/_ (conjunction),
++ (exclusive disjunction), _\/_ (disjunction), !_ (negation), _->_(implication), and _<->_(equivalence).
The procedure reduces tautology formulae to the constant true and all the others to some canonical form
modulo associativity and commutativity.

The �rst algebraic speci�cation code for this reduction procedure seems to have originally appeared in
[15] in the language OBJ1, and then its OBJ3 code appeared in [16]. Below we give its obvious translation to
Maude, noticing that Hsiang [26] showed that this rewriting system modulo associativity and commutativity
is Church-Rosser and terminates. The Maude team was probably also inspired by this procedure, since
the builtin BOOL module is very similar, the main di�erence being that BOOL does not allow distinguishable
identi�ers as boolean formulae and that the connectives are actually spelled, i.e., _/_ is replaced by _and_,
++ by _xor_, _->_ by _implies_, etc.

fmod PROPOSITIONAL-CALCULUS is

protecting QID .

sort Formula .

subsort Qid < Formula .

*** Constructors ***

ops true false : -> Formula .

op _/_ : Formula Formula -> Formula [assoc comm prec 15] .

op _++_ : Formula Formula -> Formula [assoc comm prec 17] .

vars X Y Z : Formula .

eq true /\ X = X .

eq false /\ X = false .

eq X /\ X = X .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ (Y ++ Z) = X /\ Y ++ X /\ Z .

*** Derived operators ***

op _\/_ : Formula Formula -> Formula [assoc prec 19] .

op !_ : Formula -> Formula [prec 13] .

op _->_ : Formula Formula -> Formula [prec 21] .

op _<->_ : Formula Formula -> Formula [prec 23] .

3

eq X \/ Y = X /\ Y ++ X ++ Y .

eq ! X = true ++ X .

eq X -> Y = true ++ X ++ X /\ Y .

eq X <-> Y = true ++ X ++ Y .

endfm

The module QID is also builtin and it provides a potentially in�nite collection of constants of sort Qid, called
quoted (or distinguishable) identi�ers, starting with a quote character, such as 'a, 'b, 'c, 'id, 'identifier,
etc. These identi�ers are used as labels for propositional variables, which are regarded special formulae (Qid
< Formula).

Notice that the operators were declared in mix-�x notation, where the underscores give the places for
the arguments, and have attributes speci�ed between squared brackets, such as assoc, comm and prec

<number>. The attribute prec gives a certain precedence to an operator2, thus eliminating the need for most
parentheses. Once the module above is loaded3 in Maude, reductions can be done as follows:

red 'a -> 'b /\ 'c <-> ('a -> 'b) /\ ('a -> 'c) . ***> true

red 'a <-> ! 'b . ***> 'a ++ 'b

Since the decidability problem for propositional calculus is well-known to be NP-complete, one should
not expect the code above to run very fast for all large problems. However, it seems to be very suitable for
our purpose, so we de�ne the LTL module on top of it in the next subsection.

2.3 Linear Temporal Logic

Classical LTL provides in addition to the propositional logic operators the temporal operators de�ned by
the following Maude speci�cation:

fmod LINEAR-TEMPORAL-LOGIC is

extending PROPOSITIONAL-CALCULUS .

op []_ : Formula -> Formula [prec 11] .

op <>_ : Formula -> Formula [prec 11].

op _U_ : Formula Formula -> Formula [prec 14] .

op o_ : Formula -> Formula [prec 11] .

endfm

An LTL standard model is a function t : N+ ! 2P for some set of atomic propositions P , i.e., an in�nite
trace over the alphabet 2P , which maps each time point (a natural number) into the set of propositions
that hold at that point. The operators have the following interpretation on such an in�nite trace. Assume
formulae X and Y. The formula []X (always X) holds if X holds in all time points, while <>X holds if X holds
in some future time point. The formula X U Y (X until Y) holds if Y holds in some future time point, and
until then X holds. Finally, o X (next X) holds for a trace if X holds in the su�x trace starting in the next
(the second) time point. The propositional operators have their obvious meaning.

As an example illustrating the semantics, the formula [](X -> <>Y) is true if for any time point ([]) it
holds that if X is true then eventually (<>) Y is true. Another similar property is [](X -> o(Y U Z)), which
states that whenever X holds then from the next state Y holds until eventually Z holds.

It's standard to de�ne a core LTL using only atomic propositions, the propositional operators !_ (not)
and _/_ (and), and the temporal operators o_ (next) and _U_ (until), and then de�ne all other propositional
and temporal operators as derived constructs. The two standard temporal equations are:

<>X = true U X (1)

[]X = !<>!X (2)

2The lower the precedence number, the tighter the binding.
3Either by typing it or using the command in <filename>. The code presented in the paper is fully executable as it is, so

the reader can extract and execute it in Maude.

4

3 Finite Trace Linear Temporal Logic

As already explained, our goal is to develop a framework for testing software systems using temporal logic.
Tests are performed on �nite execution traces and we therefore need to formalize what it means for a
�nite trace to satisfy an LTL formula. First we present a semantics of LTL on �nite traces using standard
mathematical notation. Then we present a speci�cation in Maude of a �nite trace semantics. Whereas the
former semantics uses universal and existential quanti�cation, the second Maude speci�cation is de�ned using
recursive de�nitions that have a straightforward operational rewriting interpretation and which therefore can
be executed.

3.1 Finite Trace Semantics

In this subsection we present a semantics of LTL on �nite traces. We will regard a trace as a �nite sequence
of events emitted from the program that we want to observe. Such events could for example indicate when
variables are written to. For example, the event write(x,v) would mean that \x is assigned the value v".
Note that this view is slightly di�erent from the traditional view where a trace is a sequence of program
states, each state denoting the set of propositions that hold at that state. Our view is consistent with our
goal to de�ne an LTL observer as a process that is detached from the program to be observed, receiving only
observed events. We shall abstract away from the concrete contents of events and just de�ne events as a set
of distinguishable identi�ers. The following Maude module formalizes this idea:

fmod EVENT is

protecting QID .

sort Event .

subsort Qid < Event .

endfm

It introduces the sort Event and states that the sort Qid of distinguishable identi�ers is a subsort of Event.
A trace is now a �nite list of events. This is modeled by the following Maude speci�cation:

fmod TRACE is

extending EVENT .

sort Trace .

op end : -> Trace .

op __ : Event Trace -> Trace [prec 25] .

endfm

It introduces the sort Trace and the constructors end for the empty trace, and juxtaposition of an event
\e" and a trace \t", as in \e t", for creating a new trace. We shall outline the �nite trace LTL semantics
using standard mathematical notation rather than Maude notation. Assume two partial functions de�ned for
nonempty traces head : Trace! Event and tail : Trace! Trace for taking the head and tail respectively of
a trace, and a total function length returning the length of a �nite trace. That is, head (e t) = e, tail(e t) = t,
and length(end) = 0 and length(e t) = 1+ length(t). Assume further for any trace t that ti for some natural
number i denotes the su�x trace that starts at position i, with positions starting at 1. The satisfaction
relation j= � Trace� Formula de�nes when a trace t satis�es a formula f , written t j= f , and is de�ned
inductively over the structure of the formulae as follows, where P is any quoted identi�er and X and Y are
any formulae:

t j= P i� t 6= end and head(t) = P,
t j= true i� true,
t j= false i� false,
t j= X /\ Y i� t j= X and t j= Y,
t j= X ++ Y i� t j= X xor t j= Y,
t j= []X i� (8 i � length(t)) ti j= X

t j= <>X i� (9 i � length(t)) ti j= X

t j= X U Y i� (9 i � length(t)) (ti j= Y and (8 j < i) tj j= X)
t j= o X i� t 6= end and tail (t) j= X

5

Recall the equations (1) and (2) from Subsection 2.3 on page 4. While equation (1) holds also in this new
�nite setting, equation (2): []X = !<>!X does not. To see this, observe that the formula <>!X always holds
for a �nite trace since !X holds on the empty trace end, and that therefore []X would be false on all traces.
We can, however, use a di�erent set of equations:

R = o true (3)

[]X = X U !R (4)

The operator R stands for \Running" and is true for non-empty traces: in the next state true must hold,
meaning that there must be a current event and a su�x trace following it (potentially the empty one). The
equation for []X then states that eventually the trace ends and until then X holds.

3.2 Finite Trace Semantics in Maude

Now it can be relatively easily seen that the following Maude speci�cation correctly \implements" the �nite
trace semantics of LTL described above. The only important deviation from the rigorous mathematical
formulation described above is that the quanti�ers over �nite sets of indexes are expressed recursively.

fmod FINITE-TRACE-SEMANTICS is

protecting LINEAR-TEMPORAL-LOGIC .

protecting TRACE .

op _ |= _ : Trace Formula -> Bool [prec 30] .

vars P Q : Qid . var E : Event . var T : Trace .

vars X Y : Formula .

eq end |= P = false .

eq P T |= Q = P == Q .

eq T |= true = true .

eq T |= false = false .

eq T |= X /\ Y = T |= X and T |= Y .

eq T |= X ++ Y = T |= X xor T |= Y .

eq end |= [] X = true .

eq E T |= [] X = E T |= X and T |= [] X .

eq end |= <> X = end |= X .

eq E T |= <> X = E T |= X or T |= <> X .

eq end |= X U Y = end |= Y .

eq E T |= X U Y = E T |= Y or E T |= X and T |= X U Y .

eq end |= o X = false .

eq E T |= o X = T |= X .

endfm

Notice that the de�nitions that involved the partial functions head and tail were replaced by two alternative
equations, one for when the partial function was de�ned and the other for when it was not de�ned.

One can now directly verify LTL properties on �nite traces using Maude's rewriting engine, by giving
commands such as the following:

red 'a 'b 'a 'b 'a 'c 'a 'b 'g 'f 'c 'a end |= [] ('b -> <> 'c) .

red 'a 'b 'a 'b 'a 'c 'a 'b 'g 'f 'c 'b end |= [] ('b -> <> 'c) .

which should return the expected answers, i.e., true and false, respectively. Alternatively, one can �rst
create a new module, say TEST, introducing a few traces and formulae:

fmod TEST is

extending FINITE-TRACE-SEMANTICS .

ops trace1 trace2 trace3 : -> Trace .

ops formula1 formula2 formula3 : -> Formula .

eq trace1 = 'a 'b 'a 'b 'a 'c 'a 'a 'b 'g 'f 'h 'c 'b 'a end .

eq trace2 = 'a 'b 'a 'b 'a 'c 'a 'a 'b 'g 'f 'h 'c 'b 'c end .

eq trace3 = 'a 'b 'a 'b 'a 'c 'a 'a 'b 'g 'f 'h 'c 'b 'a

6

.

.

.

'a 'b 'a 'b 'a 'c 'a 'a 'b 'g 'f 'h 'c 'b 'a end .

eq formula1 = [] ('b -> <> 'c) .

eq formula2 = <> (! formula1) .

eq formula3 = [] ((('a /\ o'b) \/ ('b /\ o'a)) U ('a /\ o'c)) .

endfm

where the three vertical dots in trace3 stand for 100 repetitions of the previous sequence of events4, and
then try various combinations:

red trace1 |= formula1 . ***> should be: false

red trace1 |= formula2 . ***> should be: true

red trace2 |= formula1 . ***> should be: false

red trace2 |= formula2 . ***> should be: true

red trace3 |= formula1 . ***> should be: false

red trace3 |= formula3 . ***> should be: false

red trace3 |= formula2 . ***> should be: true

The algorithm to test LTL formulae on traces presented above does nothing else but blindly follow the
mathematical de�nition of satisfaction (so it is correct) and even runs reasonably fast for relatively small
traces. For example, it takes less than 10,000 rewriting steps (a few milliseconds) to reduce any of the �rst
4 goals involving only traces of 15 events. Unfortunately this algorithm doesn't seem to be tractable for
large event traces, even if run on very fast and large memory machines. That's because the number of
atoms of the form T |= X in the boolean formula to be reduced keeps growing exponentially; besides that,
the boolean reduction engine is itself intractable (it works modulo associativity and commutativity). As a
practical example, it took Maude 8 million rewriting steps to reduce the �fth expression above, 53 million
steps for the sixth, and it couldn't �nish the last one in 10 hours.

Since the event traces generated by an executing program can easily be larger than 5,000 events, the
trivial algorithm above can not be used in real practical situations.

4 An E�cient Rewriting Algorithm

In this section we shall present a more e�cient rewriting semantics. First we shall motivate the design choice.
Then follows the algorithm, and �nally we prove that the new semantics is equivalent to the one given in
the previous section.

4.1 Motivation

The operational Maude semantics of LTL that was presented in the previous section is not e�cient due to
the fact that the traces are carried around in several subexpressions. For example, the semantics of the until
operator is given as follows:

eq E T |= X U Y = E T |= Y or E T |= X and T |= X U Y .

We can see that the trace T occurs in three subexpressions. A more e�cient algorithm is presented below,
which is based on the idea of consuming the events in the trace, one by one, and updating a data structure,
say of type D, corresponding to the e�ect of the event on the value of the formula. Hence, we should de�ne
a function transform : Event�D! D. Our decision to write an operational Maude semantics this way was
motivated by an attempt to program such an algorithm in Java, where such a solution would be the most
natural. As it turns out, it also yields a more e�cient rewriting system.

We have considered two approaches: an automata approach and a formula approach. In the automata
approach one could translate the formula into an automaton, and then take the synchronized product of the

4The three vertical dots are not a Maude feature.

7

automaton and the execution trace. This is for example how B�uchi automata are used in explicit-state model
checkers for representing formulae [24, 12]. A B�uchi automaton is a special automaton which accepts in�nite
traces (words): certain states are designated as acceptance states, and an in�nite trace is in the language of
the automaton if it brings the automaton through an acceptance state in�nitely often. A model checker can
detect such in�nite traces by hashing states and detect cycles that include acceptance states.

We have decided not to use B�uchi automata for a number of reasons. First, the translation of LTL
formulae to B�uchi automata is quite involved, at least of one strives for small automata, causing this approach
to become in
exible the moment we want to experiment with the logic, for example by adding past time
temporal operators, or real time temporal operators that refer to time units. It should be noted that other
similar systems like Temporal Rover [11] and MaC [27] do not use B�uchi automata, and in the Temporal
Rover case exactly for the reason stated above5. Second, at a semantic level, B�uchi automata are interpreted
over in�nite traces, and the question would be how to interpret them on �nite traces. Consider for example a
property such as [](P -> <>Q), the automaton A generated from the formula, and a �nite error free trace t
that according to the semantics satis�es the formula. The naive suggestion would be to drive the automaton
A by t until the end of the trace, and then observe whether the automaton is in an acceptance state or not.
This will, however, generally not work. In experiments made using the LTL-to-B�uchi automata translator
in the SPIN system [24]6 such as trace may bring the automaton to a state that is not an acceptance state.
Hence, one can generally not conclude anything from the resulting state. A potential solution would be
to pretend that an in�nite sequence of stuttering transitions is appended to the trace, where a stuttering
transition does not satisfy any propositions. One could then examine whether such a stuttering sequence
would bring the automaton from the state(s) resulting from the �nite trace, through an acceptance state
in�nitely often. Hence, the stuttering should be shown to \�nish o�" the automaton correctly. However,
even though such an interpretation is possible, a di�erent issue is that our �nite trace semantics of the always
operator [] is di�erent from the in�nite trace semantics implied by B�uchi automata.

Hence, a B�uchi automata approach could be possible, and will be investigated, but we are not convinced
that it is worthwhile the e�ort. In the formula approach that we choose to follow instead, we let the formula
to be checked be represented by itself in some normal form, and let it evolve as the execution trace is
traversed, reducing it to its normal form after each event, using rewriting. This turns out to be a very
e�cient solution in a testing context such as the one presented here.

4.2 Consuming Events

We de�ne the formula transforming function in the following Maude module. Given an event E and a formula
X, then X{E} denotes a new formula. The intuition behind this formula transformer is as follows. Assuming
a trace E T consisting of an event E followed by a trace T, then a formula X holds on this trace if and only if
X{E} holds on the remaining trace T.

fmod CONSUME-EVENT is

protecting LINEAR-TEMPORAL-LOGIC .

protecting EVENT .

op _{_} : Formula Event -> Formula [prec 10] .

var E : Event . vars X Y : Formula . vars P Q : Qid .

eq P {Q} = if P == Q then true else false fi .

eq true {E} = true .

eq false {E} = false .

eq (X /\ Y) {E} = X {E} /\ Y {E} .

eq (X ++ Y) {E} = X {E} ++ Y {E} .

eq ([] X) {E} = [] X /\ X {E} .

eq (<> X) {E} = <> X \/ X {E} .

eq (X U Y) {E} = Y {E} \/ X {E} /\ X U Y .

eq (o X) {E} = X .

endfm

5According to personal communication with Doron Drusinsky.
6The formula can be translated by calling SPIN as follows: spin -f "[](p -> <>q)"

8

A propositional identi�er is transformed to true if the event equals that proposition, otherwise false. The
rule for the temporal operator []X should be read as follows: the formula X must hold now (X{E}) and also
in the future ([]X). The sub-expression X{E} represents the formula that must hold for the rest of the trace
for X to hold now. As an example, consider the formula []<>P where P is a propositional identi�er. This
formula applied to the distinct proposition Q yields the following rewritings:

([]<>P){Q} => []<>P /\ (<>P){Q}

=> []<>P /\ (<>P \/ P{Q})

=> []<>P /\ (<>P \/ false)

=> []<>P /\ <>P

As we can see, the property <>P has been spawned o� as a consequence of the Q event, in addition to the
original formula that still has to hold due to the \[]" operator.

Note that these rules spell out the semantics of each temporal operator. An alternative solution would
be to de�ne some operators in terms of others, as is typically the case in the standard semantics for LTL. For
example, we could introduce an equation of the form: <>X = true U X, and then eliminate the rewriting
rule for <>X in the above module. Interestingly enough this turns out to be less e�cient, a result that we
had not quite expected since propositional logic rewriting seems to bene�t from rewriting into normal forms
as demonstrated with the module PROPOSITIONAL-CALCULUS described in Subsection 2.2.

4.3 Revised Semantics

Before we complete the de�nition of our fast algorithm to evaluate formulae on �nite traces, we need to
introduce a new operation, eval, which basically \evaluates" to either true or false a formula as it is, that
is, without using any information about the trace. This operation is needed when all the events in the trace
are consumed, and basically spells out what the semantics of a formula is on an empty trace.

fmod EVAL is

protecting LINEAR-TEMPORAL-LOGIC .

op eval : Formula -> Bool .

var P : Qid . vars X Y : Formula .

eq eval(P) = false .

eq eval(true) = true .

eq eval(false) = false .

eq eval(X /\ Y) = eval(X) and eval(Y) .

eq eval(X ++ Y) = eval(X) xor eval(Y) .

eq eval([] X) = true .

eq eval(<> X) = eval(X) .

eq eval(X U Y) = eval(Y) .

eq eval(o X) = false .

endfm

The eval function can be seen as a morphism of logics, which maps all atomic propositions to false. The
intuition here is that at the end of a trace, no propositions hold. The module in particular explains the
semantics of the temporal operators on the empty trace. Now, the revised semantics of �nite trace linear
temporal logic can be implemented as follows:

fmod FINITE-TRACE-SEMANTICS-REVISED is

protecting CONSUME-EVENT .

protecting TRACE .

protecting EVAL .

op _ |- _ : Trace Formula -> Bool [prec 30] .

var E : Event . var T : Trace . var X : Formula .

eq end |- X = eval(X) .

eq E T |- X = T |- X {E} .

endfm

9

This module de�nes a new semantics relation |- between traces and formulae. The term T |- X (T satis�es
X) is evaluated now by a recursive traversal over the trace, where each event transforms the formula. Note
that the new formula that is generated in each step is always kept small by being reduced to normal form
via the equations in the PROPOSITIONAL-CALCULUS module in Section 2.2.

Veri�cation results show that the optimized semantics is orders of magnitudes faster than the �rst se-
mantics. A rigorous mathematical analysis of the algorithm above seems to be hard and perhaps not worth
the e�ort at this stage, so we prefer to only report the results of our experiments which are very encouraging.
If one writes a new test module, say:

fmod TEST-REVISED is

protecting TEST .

extending FINITE-TRACE-SEMANTICS-REVISED .

endfm

and then one evaluates the same combinations as in Subsection 3.2 but in the optimized framework,

red trace1 |- formula1 . ***> should be: false

red trace1 |- formula2 . ***> should be: true

red trace2 |- formula1 . ***> should be: true

red trace2 |- formula2 . ***> should be: false

red trace3 |- formula1 . ***> should be: false

red trace3 |- formula3 . ***> should be: false

red trace3 |- formula2 . ***> should be: true

then one will immediately notice that the number of reductions and implicitly the reduction times are
signi�cantly reduced. For example, the 6th reduction, which took 53 million steps and 2 minutes under
the standard semantics, needs about 4,000 rewriting steps and takes less than 10 milliseconds, while the 7th
reduction, which couldn't terminate under the standard semantics in 10 hours, needs about 155,000 rewriting
steps and terminates in about 400 milliseconds on our platform.

4.4 Correctness and Completeness

In this subsection we prove that the consume-event based algorithm presented above is correct and complete
with respect to the semantics of �nite trace LTL presented in Section 3. The proof is done completely in
Maude. However, since Maude is not intended to be a theorem prover, so it does not provide an inductive
proof assistant, we actually have to generate the proof obligations by hand and then do the proofs by
reduction. However, the proof obligations in the proof of the theorem below could be automatically generated
by a proof assistant like Kumo [14] or a theorem prover like PVS [33]. We've already done it in PVS, but
we prefer to use only Maude in this paper.

Theorem 1 For any trace T and any formula X, T |= X i� T |- X.

Proof: The proof of this theorem is not trivial; we do it by induction, both on traces and formulae.
We �rst need to prove two lemmas, namely that the following two equations hold in the context of both
FINITE-TRACE-SEMANTICS and FINITE-TRACE-SEMANTICS-REVISED:

(8 X : Formula) end |= X = end |- X,

(8 E : Event, T : Trace, X : Formula) E T |= X = T |= X{E}.

We prove them by structural induction on the formula X. A constant x is needed in order to prove the �rst
lemma via the theorem of constants. However, since we prove the second lemma by structural induction
on X, we not only have to add two constants e and t for the universally quanti�ed variables E and T, but
also two other constants y and z standing for formulas which can be combined via operators to give other
formulas. The induction hypothesis for the second lemma is added to the following speci�cation as equations.
Notice that we merged the two proofs to save space. A proof assistant like Kumo or PVS would prove them
independently, generating only the needed constants for each of them.

10

fmod PROOF-OF-LEMMAS is

extending FINITE-TRACE-SEMANTICS .

extending FINITE-TRACE-SEMANTICS-REVISED .

op e : -> Event . op t : -> Trace .

ops p q : -> Qid . ops y z : -> Formula .

eq end |= y = end |- y .

eq end |= z = end |- z .

eq e t |= y = t |= y {e} .

eq e t |= z = t |= z {e} .

endfm

It is worth reminding the reader at this stage that the functional modules in Maude have initial semantics,
so proofs by induction are valid. In particular, notice that an event can only be a specialized identi�er since
there are no other operations generating events. Before proceeding further, the reader should be aware of
the operational semantics of the operation _==_, namely that the two argument terms are �rst reduced to
their normal forms which are then compared syntactically (but modulo associativity and commutativity); it
returns true if and only if the two normal forms are equal. Therefore, the answer true means that the two
terms are indeed semantically equal, while false only means that they couldn't be proved equal; they can
still be equal.

red (end |= p == end |- p) and

(end |= true == end |- true) and

(end |= false == end |- false) and

(end |= y /\ z == end |- y /\ z) and

(end |= y ++ z == end |- y ++ z) and

(end |= [] y == end |- [] y) and

(end |= <> y == end |- <> y) and

(end |= y U z == end |- y U z) and

(end |= o y == end |- o y) and

(p t |= p == t |= p {p}) and

(q t |= p == t |= p {q}) and

(e t |= true == t |= true {e}) and

(e t |= false == t |= false {e}) and

(e t |= y /\ z == t |= (y /\ z) {e}) and

(e t |= y ++ z == t |= (y ++ z) {e}) and

(e t |= [] y == t |= ([] y) {e}) and

(e t |= <> y == t |= (<> y) {e}) and

(e t |= y U z == t |= (y U z) {e}) and

(e t |= o y == t |= (o y) {e}) . ***> should be: true

The returned answer is indeed true; it took Maude 129 reductions to prove these lemmas. Notice the case
analysis on the event e at the beginning of the second lemma's proof. Therefore, one can safely add now
these lemmas as follows:

fmod LEMMAS is

protecting FINITE-TRACE-SEMANTICS .

protecting FINITE-TRACE-SEMANTICS-REVISED .

var E : Event . var T : Trace . var X : Formula .

eq end |= X = end |- X .

eq E T |= X = T |= X {E} .

endfm

We can now proceed to the proof of the theorem, by induction on traces. More precisely, we show:

P(end), and
P(T) implies P(E T), for all events E and traces T,

where P(T) is the predicate \for all formulas X, T |= X i� T |- X". This induction schema can be easily
formalized in Maude as follows:

11

fmod PROOF-OF-THEOREM is

protecting LEMMAS .

op e : -> Event . op t : -> Trace . op x : -> Formula .

var X : Formula .

eq t |= X = t |- X .

endfm

red end |= x == end |- x . ***> should be: true

red e t |= x == e t |- x . ***> should be: true

Notice the di�erence in role between the constant x and the variable X. The �rst reduction proves the base
case of the induction, using the theorem of constants for the universally quanti�ed variable X. In order to
prove the induction step, we �rst applied the theorem of constants for the universally quanti�ed variables
E and T, then added P(t) to the hypothesis (the equation \eq t |= X = t |- X ."), and then reduced
P(e t) using again the theorem of constants for the universally quanti�ed variable X. Notice that, like in the
proofs of the lemmas, we merged the two proofs to save space. �

5 Conclusions and Future Work

We have presented a �nite trace semantics of LTL in the rewriting system Maude together with a much more
e�cient version based on formula transforming events. This exercise can be regarded as a self contained
result with interest to at least the rewriting and temporal logics communities. What perhaps makes it even
more interesting is that this rewriting framework likely can be applied in testing real software applications,
where events are extracted from a running program and stored in a �nite trace, which then subsequently is
examined using a variant of the presented Maude speci�cation. We intend to carry out this experiment on
a planetary Rover software platform developed at NASA Ames.

A future research activity is to �nd a yet more e�cient representation of an LTL formula for the purpose
of achieving an optimal algorithm for testing its satisfaction on an execution trace. This becomes especially
crucial for an implementation in a standard programming language such as C++ or Java. For example
one can study how LTL formulae can be translated into automata similar to B�uchi automata. It should be
emphasized that our ultimate goal is to implement a practical tool for testing execution traces, and that a
conventional programming language therefore may be the most optimal choice.

Since the Maude modules are so simple and elegant, it is quite easy to experiment with di�erent logics.
We intend for example to extend the current framework to deal with past time temporal operators, as well
as interval logics. Finally, we plan to extend with real time operators that refer to time stamps in the events
of the execution trace. We expect such experiments to be very easy to make, but very useful in a design
phase of developing a practical tool.

In related work we are developing a tool for performing runtime analysis on execution traces. Runtime
analysis is based on the idea of extracting information from a single execution trace in order to guess
properties about other execution traces. Hence this is a way to obtain a high degree of coverage although
only one execution trace is examined. The technique consists of searching for error patterns, that is, patterns
in the execution trace that may indicate potential problems. Examples of problems that can be identi�ed this
way are data races and deadlocks. For example, a deadlock potential can be discovered from a single trace
that has no deadlocks if it can be observed that lock acquisitions do not follow a partial order. This means
that other execution traces may then have deadlocks. The violation of the partial order between locks can be
called an error pattern. We intend to integrate this environment with a temporal logic testing environment.
In particular, we intend to investigate whether error patterns can be speci�ed in a some variant of temporal
logic, and hence reduce some of the e�ort in programming runtime analysis algorithms for detecting these
error patterns.

12

References

[1] Rod Burstall and Joseph Goguen. The Semantics of Clear, a Speci�cation Language. In Dines Bjorner, editor,

Proceedings, 1979 Copenhagen Winter School on Abstract Software Speci�cation, volume 86 of Lecture Notes in

Computer Science, pages 292{332. Springer, 1980.

[2] Tierry Cattel. Modeling and Veri�cation of sC++ Applications. In Proceedings of TACAS'98: Tools and

Algorithms for the Construction and Analysis of Systems, volume 1384 of Lecture Notes in Computer Science,

pages 232{248, Lisbon, Portugal, April 1998. Springer.

[3] Manuel Clavel, Francisco J. Dur�an, Steven Eker, Patrick Lincoln, Narciso Mart��-Oliet, Jos�e Meseguer, and

Jos�e F. Quesada. The Maude system. In Paliath Narendran and Micha�el Rusinowitch, editors, Proceedings of

the 10th International Conference on Rewriting Techniques and Applications (RTA-99), volume 1631 of Lecture

Notes in Computer Science, pages 240{243, Trento, Italy, July 1999. Springer-Verlag. System Description.

[4] Manuel Clavel, Francisco J. Dur�an, Steven Eker, Patrick Lincoln, Narciso Mart��-Oliet, Jos�e Meseguer, and

Jos�e F. Quesada. Maude: Speci�cation and Programming in Rewriting Logic, March 1999. Maude System

documentation at http://maude.csl.sri.com/papers.

[5] Manuel Clavel, Francisco J. Dur�an, Steven Eker, Patrick Lincoln, Narciso Mart��-Oliet, Jos�e Meseguer, and

Jos�e F. Quesada. A Maude Tutorial, March 2000. Manuscript at http://maude.csl.sri.com/papers.

[6] Manuel Clavel, Steven Eker, Patrick Lincoln, and Jos�e Meseguer. Principles of Maude. In Jos�e Meseguer, editor,

Proceedings of the First International Workshop on Rewriting Logic, volume 4 of Electronic Notes in Theoretical

Computer Science, pages 65{89. Elsevier, 1996.

[7] Manuel Clavel and Jos�e Meseguer. Re
ection and strategies in rewriting logic. In Jos�e Meseguer, editor,

Proceedings of the First International Workshop on Rewriting Logic, volume 4 of Electronic Notes in Theoretical

Computer Science. Elsevier, 1996.

[8] James Corbett, Matthew B. Dwyer, John Hatcli�, Corina S. Pasareanu, Robby, Shawn Laubach, and Hongjun

Zheng. Bandera : Extracting Finite-state Models from Java Source Code. In Proceedings of the 22nd International

Conference on Software Engineering, Limerich, Ireland, June 2000. ACM Press.

[9] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A Deadlock Detection Tool for Concurrent Java Programs.

Software Practice and Experience, 29(7):577{603, July 1999.

[10] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended Static Checking. Technical

Report 159, Compaq Systems Research Center, Palo Alto, California, USA, 1998.

[11] Doron Drusinsky. The Temporal Rover and the ATG Rover. In Klaus Havelund, John Penix, and Willem Visser,

editors, SPIN Model Checking and Software Veri�cation, volume 1885 of Lecture Notes in Computer Science,

pages 323{330. Springer, 2000.

[12] Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple On-the-
y Automatic Veri�cation of Linear

Temporal Logic. In Proceedings of the 15th Workshop on Protocol Speci�cation, Testing, and Veri�cation. North-

Holland, 1995.

[13] Patrice Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings of the 24th ACM

Symposium on Principles of Programming Languages, pages 174{186, Paris, France, January 1997.

[14] Joseph Goguen, Kai Lin, Grigore Ro�su, Akira Mori, and Bogdan Warinschi. An overview of the tatami project. In

Kokichi Futatsugi, Tetsuo Tamai, and Ataru Nakagawa, editors, Cafe: An Industrial-Strength Algebraic Formal

Method. Elsevier, to appear, 2000.

[15] Joseph Goguen, Jos�e Meseguer, and David Plaisted. Programming with parameterized abstract objects in OBJ.

In Domenico Ferrari, Mario Bolognani, and Joseph Goguen, editors, Theory and Practice of Software Technology,

pages 163{193. North-Holland, 1983.

[16] Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud. Introducing

OBJ. In Joseph Goguen and Grant Malcolm, editors, Software Engineering with OBJ: algebraic speci�cation in

action. Kluwer, 2000.

[17] Jerry Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In Klaus Havelund, John

Penix, and Willem Visser, editors, SPIN Model Checking and Software Veri�cation, volume 1885 of Lecture Notes

in Computer Science, pages 331{342. Springer, 2000.

[18] Klaus Havelund. Mechanical Verication of a Garbage Collector. In Jos�e Rolim et al., editor, Workshop on Formal

Methods for Parallel Programming: Theory and Applications (FMPPTA'99), volume 1586 of Lecture Notes in

Computer Science, pages 1258{1283. Springer, 1999.

13

[19] Klaus Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs. In Klaus Havelund,

John Penix, and Willem Visser, editors, SPIN Model Checking and Software Veri�cation, volume 1885 of Lecture

Notes in Computer Science, pages 245{264. Springer, 2000.

[20] Klaus Havelund, Michael R. Lowry, SeungJoon Park, Charles Pecheur, John Penix, Willem Visser, and John L.

White. Formal Analysis of the Remote Agent Before and After Flight. In Proceedings of the 5th NASA Langley

Formal Methods Workshop, June 2000.

[21] Klaus Havelund, Michael R. Lowry, and John Penix. Formal Analysis of a Space Craft Controller using SPIN.

In Proceedings of the 4th SPIN workshop, Paris, France, November 1998. To appear in IEEE Transactions of

Software Engineering.

[22] Klaus Havelund and Thomas Pressburger. Model Checking Java Programs using Java PathFinder. International

Journal on Software Tools for Technology Transfer, 2(4):366{381, April 2000. Special issue of STTT containing

selected submissions to the 4th SPIN workshop, Paris, France, 1998.

[23] Klaus Havelund and Natarajan Shankar. Experiments in Theorem Proving and Model Checking for Protocol

Veri�cation. In Marie Claude Gaudel and Jim Woodcock, editors, FME'96: Industrial Bene�t and Advances in

Formal Methods, volume 1051 of Lecture Notes in Computer Science, pages 662{681. Springer, 1996.

[24] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5):279{295,

May 1997. Special issue on Formal Methods in Software Practice.

[25] Gerard J. Holzmann and Margaret H. Smith. A Practical Method for Verifying Event-Driven Software. In

Proceedings of ICSE'99, International Conference on Software Engineering, Los Angeles, California, USA, May

1999. IEEE/ACM.

[26] Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems. PhD thesis, University of Illinois at

Champaign-Urbana, 1981.

[27] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswanathan. Runtime Assurance

Based on Formal Speci�cations. In Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, 1999.

[28] Jos�e Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical Computer Science,

pages 73{155, 1992.

[29] Jos�e Meseguer. Membership algebra as a logical framework for equational speci�cation. In Proceedings,

WADT'97, volume 1376 of Lecture Notes in Computer Science, pages 18{61. Springer, 1998.

[30] David Y.W. Park, Urlich Stern, and David L. Dill. Java Model Checking. In Proceedings of the First International

Workshop on Automated Program Analysis, Testing and Veri�cation, Limerick, Ireland, June 2000.

[31] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on Foundations of

Computer Science, pages 46{77, 1977.

[32] Stefan Savage, Michael Burrows, Greg Nelson, Patrik Sobalvarro, and Thomas Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs. ACM Transactions on Computer Systems, 15(4):391{411,

November 1997.

[33] Natarajan Shankar, Sam Owre, and John M. Rushby. PVS Tutorial. Computer Science Laboratory, SRI

International, Menlo Park, CA, February 1993. Also appears in Tutorial Notes, Formal Methods Europe '93:

Industrial-Strength Formal Methods, pages 357{406, Odense, Denmark, April 1993.

[34] Scott D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In Klaus Havelund, John Penix,

and Willem Visser, editors, SPIN Model Checking and Software Veri�cation, volume 1885 of Lecture Notes in

Computer Science, pages 224{244. Springer, 2000.

[35] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model Checking Programs. In Proceedings

of ASE'2000: The 15th IEEE International Conference on Automated Software Engineering. IEEE CS Press,

September 2000.

[36] Willem Visser, SeungJoon Park, and John Penix. Using Predicate Abstraction to Reduce Object-Oriented

Programs for Model Checking. Submitted for publication.

14

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Maude . 3
2.2 Propositional Calculus . 3
2.3 Linear Temporal Logic . 4

3 Finite Trace Linear Temporal Logic 5

3.1 Finite Trace Semantics . 5
3.2 Finite Trace Semantics in Maude . 6

4 An E�cient Rewriting Algorithm 7

4.1 Motivation . 7
4.2 Consuming Events . 8
4.3 Revised Semantics . 9
4.4 Correctness and Completeness . 10

5 Conclusions and Future Work 12

15

